miércoles, 12 de octubre de 2011

HIBRIDACION DEL CARBONO

La hibridación consiste en una mezcla de orbitales puros en un estado excitado para formar orbitales hibridos equivalentes con orientaciones determinadas en el espacio.


HIBRIDACIÓN SP3 O TETRAÉDRICA

Para los compuestos en los cuales el carbono presenta enlaces simples, hidrocarburos saturados o alcanos, se ha podido comprobar que los cuatro enlaces son iguales y que están dispuestos de forma que el núcleo del átomo de carbono ocupa el centro de un tetraedro regular y los enlaces forman ángulos iguales de 109º 28' dirigidos hacia los vértices de un tetraedro. Esta configuración se explica si se considera que los tres orbitales 2p y el orbital 2s se hibridan para formar cuatro orbitales híbridos sp3.

HIBRIDACIÓN SP2
En la hibridación trigonal se hibridan los orbitales 2s, 2px y 2 py, resultando tres orbitales idénticos sp2 y un electrón en un orbital puro 2pz .
El carbono hibridado sp2 da lugar a la serie de los alquenos.
La molécula de eteno o etileno presenta un doble enlace:
  1. un enlace de tipo σ por solapamiento de los orbitales hibridos sp2
  2. un enlace de tipo π por solapamiento del orbital 2 pz
El enlace π es más débil que el enlace σ lo cual explica la mayor reactividad de los alquenos, debido al grado de insaturación que presentan los dobles enlaces.
El doble enlace impide la libre rotación de la molécula.

HIBRIDACIÓN SP

Los átomos que se hibridan ponen en juego un orbital s y uno p, para dar dos orbitales híbridos sp, colineales formando un ángulo de 180º. Los otros dos orbitales p no experimentan ningún tipo de perturbación en su configuración.

El ejemplo más sencillo de hibridación sp lo presenta el etino.


REFERENCIA:


PAGINA DE WEB


[http://www.textoscientificos.com/quimica/organica/hibridacion-carbono]

CARGA FORMAL

En química, una carga formal (FC) es una carga parcial de un átomo en una molécula, asignada al asumir que los electrones en un enlace químico se comparten por igual entre los átomos, sin consideraciones de electronegatividad relativa o, en otra definición, la carga que quedaría en un átomo cuando todos los ligandos son removidos homolíticamente.

La carga formal de cualquier átomo en una molécula puede ser calculada por la siguiente ecuación: carga formal = número de electrones de valencia del átomo aislado - electrones de pares libres del átomo en la molécula - la mitad del número total de electrones que participan en enlaces covalentes con este átomo en la molécula.

Cuando se determina la estructura de Lewis correcta (o la estructura de resonancia) para una molécula, es un criterio muy significativo en la selección de la estructura final el que la carga formal (sin signo) de cada uno de los átomos esté minimizada.


REFERENCIA:


PAGINA WEB


[http://es.wikipedia.org/wiki/Carga_formal]

ESTRUCTURA DE LEWIS

La Estructura de Lewis, o puede ser llamada diagrama de punto, modelo de Lewis o ALDA representación de Lewis, es una representación gráfica que muestra los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.

Esta representación se usa para saber la cantidad de electrones de valencia de un elemento que interactúan con otros o entre su misma especie, formando enlaces ya sea simples, dobles, o triples y estos se encuentran íntimamente en relación con los enlaces químicos entre las moléculas y su geometría molecular, y la distancia que hay entre cada enlace formado.
Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí.

En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapartados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan alrededor de los átomos a los que pertenece.

Este modelo fue propuesto por Gilbert N. Lewis quien lo introdujo por primera vez en 1916 en su artículo La molécula y el átomo.


REFERENCIA:


PAGINA WEB


[http://es.wikipedia.org/wiki/Estructura_de_Lewis]

HETEROLISIS Y HOMOLISIS


HETEROLISIS
En química, heterólisis o ruptura heterolítica (del Greek τερος, heteros, "diferente," y λυσις, lusis, "ruptura") es la apertura de un enlace químico de una molécula neutral que genera un catión y un anión.[1] En este proceso, los dos electrones que constituyen el enlace son asignados al mismo fragmento.
La energía involucrada en este proceso se denomina energía de disociación heterolítica de enlace. La apertura del enlace también es posible por un proceso denominado homólisis. En la heterólisis, se requiere energía adicional para separar el par iónico. Un solvente ionizante ayuda a reducir esta energía.

HOMOLISIS

Ruptura de un enlace químico en el que cada átomo participante del enlace retiene un electrón del par que constituía la unión formándose 2 radicales libres.
La energía necesaria para llevar a cabo la ruptura se conoce como "energía de disociación homolítica de enlace" y puede ser aportada, por ejemplo, por medio de radiación ultravioleta.
Otros tipos de ruptura de enlace, como la heterólisis, implican que una de las especies formadas retiene los dos electrones que formaban parte de la unión, quedando con una carga eléctrica neta negativa mientras la otra especie queda con una carga positiva.


REFERENCIA:


PAGINA WEBS


[http://es.wikipedia.org/wiki/Heter%C3%B3lisis]
[http://es.wikipedia.org/wiki/Hom%C3%B3lisis]

POLARIDAD DE UN ENLACE COVALENTE

La polaridad química o sólo polaridad es una propiedad de las moléculas que representa la separación de las cargas eléctricas en la misma. Esta propiedad está íntimamente relacionada con otras propiedades como la solubilidad, punto de fusión, punto de ebullición, fuerzas intermoleculares, etc. Una molecula polar puede ser NaCl que es muy polar y puede disociar con agua que a la vez es sumamente polar.
Al formarse una molécula de modo covalente el par de electrones tiende a desplazarse hacia el átomo que tiene mayor electronegatividad. Esto origina una densidad de carga desigual entre los núcleos que forman el enlace (se forma un dipolo eléctrico). El enlace es más polar cuanto mayor sea la diferencia entre las electronegatividades de los átomos que se enlazan; así pues, dos átomos iguales atraerán al par de electrones covalente con la misma fuerza (establecida por la Ley de Coulomb) y los electrones permanecerán en el centro haciendo que el enlace sea apolar.
Pero un enlace polar no requiere siempre una molécula polar; para averiguar si una molécula es polar hay que atender a la cantidad de enlaces polares y la estructura de la molécula. Para ello es necesario determinar un parámetro físico llamado momento dipolar eléctrico del dipolo eléctrico. Se define como una magnitud vectorial con módulo igual al producto de la carga q por la distancia que las separa d, cuya dirección es la recta que las une, y cuyo sentido va de la carga negativa a la positiva. Esta magnitud es, por tanto, un vector; y la polaridad será la suma vectorial de los momentos dipolares de los enlaces.
De esta manera una molécula que sólo contiene enlaces apolares es siempre apolar, ya que los momentos dipolares de sus enlaces son nulos. En moléculas diatómicas son apolares las moléculas formadas por un solo elemento o elementos con diferencia de electronegatividad muy reducida.
Serán también apolares las moléculas simétricas por el mismo motivo. El agua, por ejemplo, es una molécula fuertemente polar ya que los momentos dipolares de los enlaces dispuestos en "V" se suman ofreciendo una densidad de carga negativa en el oxígeno y dejando los hidrógenos casi sin electrones.
La polaridad es una característica muy importante ya que puede ayudarnos a reconocer moléculas (por ejemplo a diferenciar el trans-dicloroetano que es apolar y el cis-dicloroetano que es fuertemente polar). También es importante en disoluciones ya que un disolvente polar solo disuelve otras sustancias polares y un disolvente apolar solo disuelve sustancias apolares ("semejante disuelve a semejante"). Aunque la polaridad de un disolvente depende de muchos factores, puede definirse como su capacidad para solvatar y estabilizar cargas. Por último la polaridad influye en el estado de agregación de las sustancias así como en termodinámica, ya que las moléculas polares ofrecen fuerzas intermoleculares (llamadas fuerzas de atracción dipolo-dipolo) además de las fuerzas de dispersión o fuerza de London.


REFERENCIA:


PAGINA WEB


[http://es.wikipedia.org/wiki/Polaridad_(qu%C3%ADmica)]

TIPOS DE ENLACES QUIMICOS



ENLACE COVALENTE

El enlace covalente polar es intermediado en su carácter entre un enlace covalente y un enlace iónico. Los átomos enlazados de esta forma tienen carga eléctrica neutra.
Los enlaces covalentes pueden ser simples cuando se comparte un solo par de electrones, dobles al compartir dos pares de electrones, triples cuando comparten tres pares de electrones, o cuádruples cuando comparten cuatro pares de electrones.
Los enlaces covalentes no polares se forman entre átomos iguales, no hay variación en el número de oxidación. Los enlaces covalentes polares se forman con átomos distintos con gran diferencia de electronegatividades. La molécula es eléctricamente neutra, pero no existe simetría entre las cargas eléctricas originando la polaridad, un extremo se caracteriza por ser electropositivo y el otro electronegativo.
En otras palabras, el enlace covalente es la unión entre átomos en donde se da un compartimiento de electrones, los átomos que forman este tipo de enlace son de carácter no metálico. Las moléculas que se forman con átomos iguales (mononucleares) presentan un enlace covalente pero en donde la diferencia de electronegatividades es nula.
Se presenta entre los elementos con poca diferencia de electronegatividad (< 1.7), es decir cercanos en la tabla periódica o bien, entre el mismo elemento para formar moleculas diatomicas.


ENLACE IONICO

El enlace iónico es un tipo de interacción electrostática entre átomos que tienen una gran diferencia de electronegatividad. No hay un valor preciso que distinga la ionicidad a partir de la diferencia de electronegatividad, pero una diferencia sobre 2.0 suele ser iónica, y una diferencia menor a 1.5 suele ser covalente. En palabras más sencillas, un enlace iónico es aquel en el que los elementos involucrados aceptan o pierden electrones (se da entre un catión y un anión) o dicho de otra forma, es aquel en el que un elemento más electronegativo atrae a los electrones de otro menos electronegativo.[3] El enlace iónico implica la separación en iones positivos y negativos. Las cargas iónicas suelen estar entre -3e a +3e.
1) Se presenta entre los elementos con gran diferencia de electronegatividad (>1.7), es decir alejados de la tabla periódica: entre metales y no metales. 2) Los compuestos que se forman son solidos cristalinos con puntos de fusión elevados. 3) Se da por TRANSFERENCIA de electrones: un atomo PIERDE y el otro 'GANA' 4) Se forman iones (cationes y aniones)


ENLACE COVALENTE COORDINADO

El enlace covalente coordinado, algunas veces referido como enlace dativo, es un tipo de enlace covalente, en el que los electrones de enlace se originan sólo en uno de los átomos, el donante de pares de electrones, o base de Lewis, pero son compartidos aproximadamente por igual en la formación del enlace covalente. Este concepto está cayendo en desuso a medida que los químicos se pliegan a la teoría de orbitales moleculares. Algunos ejemplos de enlace covalente coordinado existen en nitronas y el borazano. El arreglo resultante es diferente de un enlace iónico en que la diferencia de electronegatividad es pequeña, resultando en una covalencia. Se suelen representar por flechas, para diferenciarlos de otros enlaces. La flecha muestra su cabeza dirigida al aceptor de electrones o ácido de Lewis, y la cola a la base de Lewis. Este tipo de enlace se ve en el ion amonio.

REFERENCIA:

PAGINA WEB

[http://es.wikipedia.org/wiki/Enlace_qu%C3%ADmico#Enlace_covalente]